数学竞赛训练题二
一、选择题(本题满分36分,每小题6分)
1.设函数 如果 那么 的值等于( )
A.3 B.7 C.-3 D.-7
2.已知P为四面体S-ABC的侧面SBC内的一个动点,且点P与顶点S的距离等于点P到底面ABC的距离,那么在侧面SBC内,动点P的轨迹是某曲线的一部分,则该曲线是( )
A.圆或椭圆 B.椭圆或双曲线 C.双曲线或抛物线 D.抛物线或椭圆
3.给定数列{xn},x1=1,且xn+1= ,则 =( )
A,1 B.-1 C.2+ D.-2+ 4.已知 ,定义 ,则 ( )
A. B. C. D. 5.已知双曲线 的右焦点为F,右准线为 ,一直线交双曲线两支于P、Q两点,交 于R,则 ( )
A. B.
C. D. 6.在△ABC中,角A、B、C的对边分别记为a、b、c(b≠1),且 , 都是方程log x=logb(4x-4)的根,则△ABC( )
A.是等腰三角形,但不是直角三角形 B.是直角三角形,但不是等腰三角形
C.是等腰直角三角形 D.不是等腰三角形,也不是直角三角形
二、填空题(本题满分54分,每小题9分)
7.若log4(x+2y)+log4(x-2y)=1,则|x|-|y|的最小值是_________.
8.如果:(1)a, b, c, d都属于{1, 2, 3, 4}
(2)a≠b, b≠c, c≠d, d≠a
(3)a是a, b, c, d中的最小数
那么,可以组成的不同的四位数abcd的个数是________.
9.设 则关于 的方程 的所有实数解之和为
10.若对|x|≤1的一切x,t+1>(t2-4)x恒成立,则t的取值范围是_______________.
11.边长为整数且面积(的数值)等于周长的直角三角形的个数为 。
12.对每一实数对(x, y),函数f(t)满足f(x+y)=f(x)+f(y)+f(xy)+1。若f(-2)=-2,试求满足f(a)=a的所有整数a=__________.
三、解答题(每小题20分,共60分)
13.已知a, b, c∈R+,且满足 ≥(a+b)2+(a+b+4c)2,求k的最小值。
14.已知半径为1的定圆⊙P的圆心P到定直线 的距离为2,Q是 上一动点,⊙Q与⊙P相外切,⊙Q交 于M、N两点,对于任意直径MN,平面上恒有一定点A,使得∠MAN为定值。求∠MAN的度数。
15. 数列 定义如下: ,且当 时, 已知 ,求正整数n.
数学竞赛训练题二答案
一、选择题
1.由递推式得:3(an+1-1)=-(an-1),则{an-1}是以8为首项,公比为- 的等比数列,∴Sn-n=(a1-1)+(a2-1)+…+(an-1)= =6-6×(- )n,∴|Sn-n-6|=6×( )n< ,得:3n-1>250,∴满足条件的最小整数n=7,故选C。
2.设正三棱锥P-ABC中,各侧棱两两夹角为α,PC与面PAB所成角为β,则VS-PQR= S△PQR·h= PQ·PRsinα)·PS·sinβ。另一方面,记O到各面的距离为d,则VS-PQR=VO-PQR+VO-PRS+VO-PQS,
S△PQR·d= S△PRS·d+ S△PRS·d+ S△PQS·d= PQ·PRsinα+ PS·PRsinα+ PQ·PS·sinα,故有:PQ·PR·PS·sinβ=d(PQ·PR+PR·PS+PQ·PS),即 =常数。故选D。
3.xn+1= ,令xn=tanαn,∴xn+1=tan(αn+ ), ∴xn+6=xn, x1=1,x2=2+ , x3=-2- , x4=-1, x5=-2+ , x6=2- , x7=1,……,∴有 。故选A。
4.设向量 =(x, y),则 ,
即 ,即 . ∴ 或 ,∴S△AOB= =1。
5.设P(x1, y1),Q(x, y),因为右准线方程为x=3,所以H点的坐标为(3, y)。又∵HQ=λPH,所以 ,所以由定比分点公式,可得: ,代入椭圆方程,得Q点轨迹为 ,所以离心率e= 。故选C。
6.由log x=logb(4x-4)得:x2-4x+4=0,所以x1=x2=2,故C=2A,sinB=2sinA,因A+B+C=180°,所以3A+B=180°,因此sinB=sin3A,∴3sinA-4sin3A=2sinA,∵sinA(1-4sin2A)=0,又sinA≠0,所以sin2A= ,而sinA>0,∴sinA= 。因此A=30°,B=90°,C=60°。故选B。
二、填空题
7. 。 由对称性只考虑y≥0,因为x>0,∴只须求x-y的最小值,令x-y=u,代入x2-4y2=4,有3y2-2uy+(4-u)2=0,这个关于y的二次方程显然有实根,故△=16(u2-3)≥0。
8.46个。abcd中恰有2个不同数字时,能组成C =6个不同的数。abcd中恰有3个不同数字时,能组成 =16个不同数。abcd中恰有4个不同数字时,能组成A =24个不同数,所以符合要求的数共有6+16+24=46个。
9. 解考虑M的n+2元子集P={n-l,n,n+1,…,2n}.
P中任何4个不同元素之和不小于(n-1)+n+(n+1)+(n+2)=4n+2,所以k≥n+3.
将M的元配为n对,Bi=(i,2n+1-i),1≤i≤n.
对M的任一n+3元子集A,必有三对 同属于
A(i1、i 2、i 3两两不同).
又将M的元配为n-1对,C i (i,2n-i),1≤i≤n-1.
对M的任一n+3元子集A,必有一对 同属于A,
这一对 必与 中至少一个无公共元素,这4个元素互不相同,且和为2n+1+2n=4n+1,最小的正整数k=n+3
10. 。①若t2-4>0,即t<-2或t>2,则由 >x(|x|≤1)恒成立,得 , t+1>t2-4, t2-t-5<0解得 ,从而 11.23.。 12.1或-2。令x=y=0得f(0)=-1;令x=y=-1,由f(-2)=-2得,f(-1)=-2,又令x=1, y=-1可得f(1)=1,再令x=1,得f(y+1)=f(y)+y+2 ①,所以f(y+1)-f(y)=y+2,即y为正整数时,f(y+1)-f(y)>0,由f(1)=1可知对一切正整数y,f(y)>0,因此y∈N*时,f(y+1)=f(y)+y+2>y+1,即对一切大于1的正整数t,恒有f(t)>t,由①得f(-3)=-1, f(-4)=1。 下面证明:当整数t≤-4时,f(t)>0,因t≤-4,故-(t+2)>0,由①得:f(t)-f(t+1)=-(t+2)>0, 即f(-5)-f(-4)>0,f(-6)-f(-5)>0,……,f(t+1)-f(t+2)>0,f(t)-f(t+1)>0 相加得:f(t)-f(-4)>0,因为:t≤4,故f(t)>t。综上所述:满足f(t)=t的整数只有t=1或t=2。 三、解答题 13.解:因为(a+b)2+(a+b+4c)2=(a+b)2+[(a+2c)+(b+2c)]2≥(2 )2+(2 +2 )2= 4ab+8ac+8bc+16c 。所以 ≥ 。 当a=b=2c>0时等号成立。故k的最小值为100。 14.以 为x轴,点P到 的垂线为y轴建立如图所示的直角坐标系,设Q的坐标为(x, 0),点A(k, λ),⊙Q的半径为r,则:M(x-r, 0), N(x+r, 0), P(2, 0), PQ= =1+r。所以x=± , ∴tan∠MAN= ,令2m=h2+k2-3,tan∠MAN= ,所以m+r k =nhr,∴m+(1-nh)r= ,两边平方,得:m2+2m(1-nh)r-(1-nh)2r2=k2r2+2k2r-3k2,因为对于任意实数r≥1,上式恒成立,所以 ,由(1)(2)式,得m=0, k=0,由(3)式,得n= 。由2m=h2+k2-3得h=± ,所以tan∠MAN= =h=± 。所以∠MAN=60°或120°(舍)(当Q(0, 0), r=1时∠MAN=60°),故∠MAN=60°。 15.(1)证:依题设,对任意x∈R,都有f(x)≤1。∵f(x)=-b(x- )2+ ,∴f( )= ≤1,∵a>0, b>0, ∴a≤2 。 (2)证:(必要性),对任意x∈[0, 1],|f(x)|≤1 -1≤f(x)据此可推出-1≤f(1)即a-b≥-1,∴a≥b-1。对任意x∈[0, 1],|f(x)|≤1 f(x)≤1,因为b>1,可推出f( )≤1。即a· -≤1,∴a≤2 ,所以b-1≤a≤2 。 (充分性):因b>1, a≥b-1,对任意x∈[0, 1],可以推出:ax-bx2≥b(x-x2)-x≥-x ≥-1,即:ax-bx2≥-1;因为b>1,a≤2 ,对任意x∈[0, 1],可推出ax-bx2≤2 -bx2≤1,即ax-bx2≤1,∴-1≤f(x)≤1。 综上,当b>1时,对任意x∈[0, 1], |f(x)|≤1的充要条件是:b-1≤a≤2 。 (3)解:因为a>0, 0 f(x)=ax-bx2≥-b≥-1,即f(x)≥-1; f(x)≤1 f(1)≤1 a-b≤1,即a≤b+1; a≤b+1 f(x)≤(b+1)x-bx2≤1,即f(x)≤1。 所以,当a>0, 0
艺考用户说说
友善是交流的起点