2022北部湾中考数学压轴题分析1:正方形中求三角形的周长

中考数学解题方法,艺考

中考数学解题方法

2022-8-27 10:17:27 文/孙岩 图/白梦洁

关注

本题选自2022年北部湾中考数学第18题,即填空压轴题。以正方形为背景,考查线段求值的问题。

题目较为复杂,需要仔细理清图中三角形的关系,以及线段的关系,通过相似、三角或勾股定理求解。

此类题目必须掌握。


有兴趣讨论数学学习的同学可以考虑加入以下的QQ群!

2023中考数学学习讨论群:963392512

【题目】

如图,在正方形ABCD中,AB=4√2,对角线AC,BD相交于点O.点E是对角线AC上一点,连接BE,过点E作EF⊥BE,分别交CD,BD于点F,G,连接BF,交AC于点H,将△EFH沿EF翻折,点H的对应点H′恰好落在BD上,得到△EFH′.若点F为CD的中点,则△EGH′的周长是 .

中考数学压轴题


【答案】5+√5。

【分析】求△EGH′的周长就是求该三角形的三边长,当然也可以转化为求△EGH的周长。

中考数学压轴题

先把容易求的线段长度表示在图中。

中考数学压轴题

如上图,根据Rt△BOE∽Rt△EOG,

可以得到OG=1,EG=√5。

根据折叠可以得到∠FEH=∠FEH′。

那么根据角平分线分线段成比例,可以得到

EO/EH'=OG/GH',则EH'=2GH'。

设GH′=x,则EH′=2x,

在Rt△EOH′中根据勾股定理得,

EO+OH′=EH′,

即2+(1+x)=(2x),

解得x1=-1(舍去),x2=5/3。

则△EGH′的周长为5+√5。


【方法二】

中考数学压轴题

如图,连接GH,根据轴对称得△EGH≌△EGH′。

那么求出OH与GH的长即可。

观察上图,可以发现一个“X字型”相似,即△ABH∽△CFH,

那么就可以得到AH/CH=AB/CF=2/1。

由AC=8得CH=8/3,则OH=4/3。

那么根据勾股定理可以得到GH=5/3,

那么△EGH的周长为2+4/3+5/3+√5=5+√5。


【方法三】

中考数学压轴题

如上图,过点E作EM⊥AB,可以得到EM与MB的比为1:3。

再根据△BEM∽△BHO,可以得到OH/OB=1/3,

那么就可以得到OH=4/3,进而得到GH的长为5/3,

与上面的方法类似,得到周长为5+√5。

在这里求出tan∠OBH=1/3,其实也可以利用高中三角恒等变换公式中的正切的差角公式。

tan∠OBH=tan(45°-∠OBE)=1/2/(1+1/2)=1/3。


【方法四】

如果考虑用函数的方法也可以,以点B为坐标原点,建立平面直角坐标系。

得到BE的解析式为y=3x,

直线AC的解析式为y=-x+4√2,

直线BF的解析式为y=1/2x,

直线EF的解析式为y=-1/3x+10√2/3,

直线BD的解析式为y=x。

求得点E的坐标为(√2,3√2),

点H的坐标为(8√2/3,4√2/3),

点G的坐标为(5√2/2,5√2/2)。

根据勾股定理或者两点间的距离公式,可以得到

EH=10/3,GH=5/3,EG=√5,

那么周长就为5+√5。


【总结】

本题以正方形为背景,是比较特殊的图形,在中考中经常会出现,特别是在选填压轴题或者解答的压轴题中。

本题还有其它的一些特殊性质,如下图中,有四点共圆,以及相似等等。

本题的关键还是在于求出OH或者GH′的长。

中考数学压轴题

艺考相关文章

发现更多好内容

艺考用户说说

友善是交流的起点
带你看艺考艺考推送时光机
位置:艺考-中考-中考自媒体-微信公众号-中考数学解题方法-2022北部湾中考数学压轴题分析1:正方形中求三角形的周长
咦!没有更多了?去看看其它艺考内容吧