两平面垂直法向量关系

高考资讯,艺考

高考资讯

2022-1-26 08:57:42 文/赵阳

关注

平面垂直,法向量也是相互垂直的,法向量的数量积等于0。设向量一的坐标是(a,b),向量二的坐标是(m,n),若二者垂直,则am+bn=0。设a、b为非零向量,a⊥b等价于a·b=0。

面面垂直的向量方法是:证明这两个平面的法向量互相垂直,即法向量的数量积等于0;

面面垂直的判定定理中:文字语言是“一个平面过另一个平面的一条垂线,则这两个平面垂直”,符号语言是“若l⊥β,lα,则α⊥β”。

已知两个非零向量a、b,那么|a||b|cosθ(θ是a与b的夹角)叫做a与b的数量积或内积。记作a·b。两个向量的数量积等于它们对应坐标的乘积的和。即:若a=(x1,y1),b=(x2,y2),则a·b=x1·x2+y1·y2。

以上就是高考网小编为大家介绍的关于两平面垂直法向量关系问题,想要了解的更多关于《两平面垂直法向量关系》相关文章,请继续关注高考网!

艺考相关文章

发现更多好内容

艺考用户说说

友善是交流的起点
带你看艺考艺考推送时光机
位置:艺考-高考-高考信息资源-阳光高考-高考资讯-两平面垂直法向量关系
咦!没有更多了?去看看其它艺考内容吧