24.(2012•嘉兴)在平面直角坐标系xOy中,点P是抛物线:y=x2上的动点(点在第一象限内).连接 OP,过点0作OP的垂线交抛 物线于另一点Q.连接PQ,交y轴于点M.作PA丄x轴于点A,QB丄x轴于点B.设点P的横坐标为m.
(1)如 图1,当m= 时,
①求线段OP的长和tan∠POM的值;
②在y轴上找一点C,使△OCQ是以OQ为腰的等腰三角形,求点C的坐标;
(2)如图2,连接AM、BM,分别与OP、OQ相交于点D、E.
①用含m的代数式表示点Q的坐标;
②求证:四边形ODME是矩形.
考点: 二次函数综合题。
专题: 代数几何综合题;分类讨论。
分析: (1)①已知m的值,代入抛物线的解析式中可求出点P的坐标;由此确定PA、OA的长,通过解直角三角形易得出结论.
②题干要求△OCQ是以OQ为腰的等腰三角形,所以分QO=OC、QC=QO两种情况来判断:
QO=QC时,Q在线段OC的垂直平分线上,Q、O的纵坐标已知,C点坐标即可确定;
QO=OC时,先求出OQ的长,那么C点坐标可确定.
(2)①由∠QOP=90°,易求得△QBO∽△MOA,通过相关的比例线段来表示出点Q的坐标;
②在四边形ODME中,已知了一个直角,只需判定该四边形是平行四边形即可,那么可通过证明两组对边平行来得证.
解答: 解:(1)①把x= 代入 y=x2,得 y=2,∴P( ,2),∴OP=
∵PA丄x轴,∴PA∥MO.∴tan∠P0M=tan∠0PA= = .
②设 Q(n,n2),∵tan∠QOB=tan∠POM,
∴ .∴n=
∴Q( , ),∴OQ= .
当OQ=OC时,则C1(0, ),C2(0, );
当OQ=CQ时,则C3(0,1).
综上所述,所求点C坐标为:C1(0, ),C2(0, ),C3(0,1).
(2)①∵P(m,m2),设 Q(n,n2),∵△APO∽△BOQ,∴
∴ ,得n= ,∴Q( , ).
②设直线PO的解析式为:y=kx+b,把P(m,m2)、Q( , )代入,得:
解得b=1,∴M(0,1)
∵ ,∠QBO=∠MOA=90°,
∴△QBO∽△MOA
∴∠MAO=∠QOB,
∴QO∥MA
同理可证:EM∥OD
又∵∠EOD=90°,
∴四边形ODME是矩形.
点评: 考查了二次函数综合题,该题涉及的知识点较多,有:解直角三角形、相似三角形、等腰直角三角形的判定、矩形的判定等重要知识点;(1)②题中,要注意分类进行讨论,以免出现漏解、错解的情况
更多浙江中考相关信息请点击 浙江中考网:/zhongkao/zhejiang/
【编辑推荐】
艺考用户说说
友善是交流的起点