1.任意角的概念、弧度制
(1)了解任意角的概念和弧度制的概念。
(2)能进行弧度与角度的互化。
2.三角函数
(1)理解任意角三角函数(正弦、余弦、正切)的定义。
(2)能利用单位圆中的三角函数线推导出 α ,π± α 的正弦、余弦、正切的诱导公式,能画出 的图像,了解三角函数的周期性。
(3)理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与 x 轴交点等)。理解正切函数在区间( )内的单调性。
(4)理解同角三角函数的基本关系式:
(5)了解函数 的物理意义;能画出 的图像,了解参数 对函数图像变化的影响。
(6)体会三角函数是描述周期变化现象的重要函数模 型,会用三角函数解决一些简单实际问题。
(九)平面向量
1.平面向量的实际背景及 基本概念
(1)了解向量的实际背景。
(2)理解平面向量的概念和两个向量相等的含义。
(3)理解向量的几何表示。
2.向量的线性运算
(1)掌握向量加法、减法的运算,并理解其几何意义。
(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。
(3)了解向量线性运算的性质及其几何意义。
3.平面向量的基本定理及坐标表示
(1)了解平面向量的基本定理及其意义。
(2)掌握平面向量的正交分解及其坐标表示。
(3)会用坐标表示平面向量的加法、减法与数乘运算。
(4)理解用坐标表示的平面向量共线的条件。
4.平面向量的数量积
(1) 理解平面向量数量积的含义及其物理意义。
(2) 了解平面向量的数量积与向量投影的关系。
(3) 掌握数量积的坐标表达式,会进行平面向量数量积的运算。
(4) 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。
5.向量的应用
(1)会用向量方法解决某些简单的平面几何问题。
(2)会用向量方法解决简单的力学问题与其他一些实际问题。
(十)三角恒等变换
1.两角和与差的三角函数公式
(1) 会用向量的数量积推导出两角差的余弦公式。
(2) 会用两角差的余弦公式推导出两角差的正弦、正切公式。
(3) 会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系。
2.简单的三角恒等变换
能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)。
(十一)解三角形
1.正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
2.应用
能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
(十二)数列
1.数列的概念和简单表示法
(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式)。
(2)了解数列是自变量为正整数的一类特殊函数。
2.等差数列、等比数列
(1) 理解等差数列、等比数列的概念。
(2) 掌握等差数列、等比数列的通项公式与前n项和公式。
(3) 能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题。
(4) 了解等差数列与一次函数、等比数列与指数函数的关系。
(十三)不等式
1.不等关系
了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景。
2.一元二次不等式
(1) 会从实际情境中抽象出一元二次不等式模型。
(2) 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系。
(3) 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图。
3.二元一次不等式组与简单线性规划问题
(1) 会从实际情境中抽象出二元一次不等式组。
(2) 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等 式组。
(3) 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
4.基本不等式:
(1) 了解基本不等式的证明过程。
(2) 会用基本不等式解决简单的最大(小)值问题。
(十四)常用逻辑用语[来源:Zxxk。Com]
(1) 理解命题的概念。
(2)了解"若p,则q"形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系。
(3) 理解必要条件、充分条件与充要条件的意义。
(4)了解逻辑联结词"或"、"且"、"非"的含义。
(5) 理解全称量词与存在量词的意义。
(6) 能正确地对含有一个量词的命题进行否定。
(十五)圆锥曲线与方程
(1) 了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。
(2) 掌握椭圆、抛物线的定义、几何图形、标准方程及简单性质(范围、对称性、定点、离心率)。
(3) 了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质(范围、对称性、定点、离心率、渐近线)。
(4) 了解曲线与方程的对应关系
(5)理解数形结合的思想
(6)了解圆锥曲线的简单应用。
(十六)空间向量与立体几何
(1)了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示。
(2) 掌握空间向量的线性运算及其坐标表示。
(3) 掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线与垂直。
(4) 解直线的方向向量与平面的法向量。
(5) 能用向量语言表述线线、线面、面面的平行和垂直关系。
(6)能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理)。
(7) 能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究几何问题中的应用。
(十七)导数及其应用
(1)了解导数概念的实际背景。
(2) 通过函数图像直观理解导数的几何意义。
(3) 根据导数的定义求函数 (c为常数)的导数。
(4) 能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b)的复合函数)的导数 。
•常见基本初等函数的导数公式和常用导数运算公式:
(C为常数) , n∈N+ ;
(a>0,且a≠1) ;
(a>0,且a≠1) 。
•常用的导数运算法则:
法则1 ;
法则2 ;
法则3 。
(5)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
(6) 了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
(7)会用导数解决某些实际问题。。
(8)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念。
(9) 了解微积分基本定理的含义。
(十八)推理与证明
(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。
(2) 了解演绎推理的含义,了解合情推理和演绎推理的联系和差异;掌握演绎推 理的"三段论",能运"三段论"进行一些简单的演绎推理。
(3) 了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
(4) 了解反证法的思考过程和特点。
(5)了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
(十九)数系的扩充与复数的引入
(1)理解复数的基本概念,理解复数相等的充要条件。
(2)了解复数的代数表示法及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示。
(3)能进行复数代数形式的四则运算,了解两个具体复数相加、相减的几何意义.
(二十)计数原理
(1)理解分类加法计数原理和分步乘法计数原理,能正确区分"类"和"步",并能利用两个原理解决一些简单的实际问题.
(2)理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题。
(3)理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题。
(4)会用二项式定理解决与二项展开式有关的简单问题。
(二十一)概率与统计
(1) 理解取有限个值的离散型随机变量及其分布列的概念,认识分布列刻画随机现象的重要性,会求某些取有限个值的离散型随机变量的分布列。
(2)了解超几何分布及其导出过程,并能进行简单的应用。
(3) 了解条件概率的概念,了解两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题。
(4) 理解取有限个值的离散型随机变量均值、方差的概念,会求简单离散型随机变量的均值、方差,并能利用离散型随机变量的均值、方差概念解决一些简单问题。
(5) 借助直观直方图认识正态分布曲线的特点及曲线所表示的意义。
(6)了解回归的基本思想、方法及其简单应用。
(7)了解独立性检验的思想、方法及其初步应用。
第二章 综合素质测试大纲
综合素质测试主要考查考生在思想道德、人文科学、健康、从事企事业单位工作的潜能等几个方面的素质水平,其知识来源主要靠平时的积累。测试内容包括思想道德素质、健康素质、科学文化素质、文字理解与表达、数字处理与运算能力、分析推理能力、职业素质等部分,具体如下:
1、思想道德素质、职业道德、时政
考察考生是否具有正确的世界观、人生观和价值观;能否遵守“爱国守法、明礼诚信、团结友善、勤俭自强、敬业奉献”的公民基本道德规范;是否具备一定的法律常识,具有较强的法律意识,能否知法、懂法、守法。学生对职业道德规范的掌握以及学生运用理论解决实际问题的能力。
2、人际沟通
要求考生具备乐观向上的心态;善于调节情绪,具备克服生活、学习、交友、就业挫折的能力。了解社交礼仪、人际交往,能适应各种工作和学习环境,妥善处理人际关系。
3、文字理解与表达
主要考察考生运用文字的能力,其中包括准确、得体地遣词用字;从语法、语气、语义等方面对有关句子作出正确判断;对文字隐含信息进行的合理推断;对比较复杂的观点或概念能够有个准确的理解。
4、数字处理与运算
主要考察考生对数字迅速反应,精确运算与处理能力;对数量关系的理解能力;对数字排列顺序或排列规律的掌握,对数学运算方法、策略的运用能力。
5、分析推理
主要考察考生对客观事物及其关系的分析推理能力,其中包括对词语、图形、概念、短文等材料的理解、比较、判断、演绎等。
6、职业素质
考察考生生命安全常识、生活常识、团队意识、沟通意识以及创业创新等意识。是否具备相应的心理知识。
第三章 考试方法与试卷结构
以能力测试为主导、考查考生所学相关课程基础知识、基本技能的掌握程度和综合运用所学知识分析、解决实际问题的能力。
1.答卷方式:闭卷、笔试。
试卷总分为450分,文化课考试(语文满分为150分、数学满分为150分)一份试卷;综合素质测试满分为150分、一份试卷。
2.题型:
试卷一般包括选择题和非选择题等题型。
3.试题难度:
试卷包括容易题、中等难度题和难题,以中等难度题为主。
2013年11月12日
艺考用户说说
友善是交流的起点